| Page 1208 | Kisaco Research

Cerebras Systems builds the fastest AI accelerators in the industry. In this talk we will review how the size and scope of massive natural language processing (NLP) presents fundamental challenges to legacy compute and to traditional cloud providers. We will explore the importance of guaranteed node to node latency in large clusters, how that can’t be achieved in the cloud, and how it prevents linear and even deterministic scaling. We will examine the complexity of distributing NLP models over hundreds or thousands of GPUs and show how quickly and easily a cluster of Cerebras CS-2s is set up, and how linear scaling can be achieved over millions of compute cores with Cerebras technology. And finally, we will show how innovative customers are using clusters of Cerebras CS-2s to train large language models in order to solve both basic and applied scientific challenges, including understanding the COVID-19 replication mechanism, epigenetic language modelling for drug discovery, and in the development of clean energy. This enables researchers to test ideas that may otherwise languish for lack of resources and, ultimately, reduces the cost of curiosity.  ​

 

Chip Design
Enterprise AI
ML at Scale
Novel AI Hardware
Systems Design
Data Science
Hardware Engineering
Software Engineering
Strategy
Systems Engineering

Author:

Andy Hock

VP, Product Management
Cerebras

Dr. Andy Hock is VP of Product Management at Cerebras Systems with responsibility for product strategy. His organization drives engagement with engineering and our customers to inform the hardware, software, and machine learning technical requirements and accelerate world-leading AI with Cerebras’ products. Prior to Cerebras, Andy has held senior leadership positions with Arete Associates, Skybox Imaging (acquired by Google), and Google. He holds a PhD in Geophysics and Space Physics from UCLA.

Andy Hock

VP, Product Management
Cerebras

Dr. Andy Hock is VP of Product Management at Cerebras Systems with responsibility for product strategy. His organization drives engagement with engineering and our customers to inform the hardware, software, and machine learning technical requirements and accelerate world-leading AI with Cerebras’ products. Prior to Cerebras, Andy has held senior leadership positions with Arete Associates, Skybox Imaging (acquired by Google), and Google. He holds a PhD in Geophysics and Space Physics from UCLA.

Chip Design
Edge AI
Enterprise AI
ML at Scale
NLP
Novel AI Hardware
Data Science
Hardware Engineering
Software Engineering
Strategy
Systems Engineering
Industry & Investment

Author:

Lip-Bu Tan

CEO
Intel

Lip-Bu Tan is chief executive officer of Intel Corporation and serves on the company’s board of directors. He was appointed to his position in March 2025.

Tan is an accomplished executive with more than two decades of semiconductor and software experience and deep relationships across the technology ecosystem. He has received several accolades for his significant contributions to the industry, including the 2022 Robert N. Noyce Award, the Semiconductor Industry Association’s highest honor, and was named one of Forbes’ Top 50 Venture Capitalists.

Tan previously served as chief executive officer of Cadence Design Systems Inc. and was also a member of its board of directors. During his 12 years as Cadence’s chief executive officer, he led a reinvention of the company and drove a cultural transformation centered on customer-centric innovation that enabled Cadence to more than double its revenue, expand operating margins and significantly outperform the market.

Tan is a founding managing partner of Walden Catalyst Ventures and chairman of Walden International, a leading venture capital firm. He has also served on the boards of public companies Credo Technology Group and Schneider Electric.

Tan holds a Bachelor of Science in physics from Nanyang Technological University in Singapore, a Master of Science in nuclear engineering from the Massachusetts Institute of Technology and an MBA from the University of San Francisco.

Lip-Bu Tan

CEO
Intel

Lip-Bu Tan is chief executive officer of Intel Corporation and serves on the company’s board of directors. He was appointed to his position in March 2025.

Tan is an accomplished executive with more than two decades of semiconductor and software experience and deep relationships across the technology ecosystem. He has received several accolades for his significant contributions to the industry, including the 2022 Robert N. Noyce Award, the Semiconductor Industry Association’s highest honor, and was named one of Forbes’ Top 50 Venture Capitalists.

Tan previously served as chief executive officer of Cadence Design Systems Inc. and was also a member of its board of directors. During his 12 years as Cadence’s chief executive officer, he led a reinvention of the company and drove a cultural transformation centered on customer-centric innovation that enabled Cadence to more than double its revenue, expand operating margins and significantly outperform the market.

Tan is a founding managing partner of Walden Catalyst Ventures and chairman of Walden International, a leading venture capital firm. He has also served on the boards of public companies Credo Technology Group and Schneider Electric.

Tan holds a Bachelor of Science in physics from Nanyang Technological University in Singapore, a Master of Science in nuclear engineering from the Massachusetts Institute of Technology and an MBA from the University of San Francisco.

Developer Efficiency
Enterprise AI
ML at Scale
Novel AI Hardware
Systems Design
Hardware Engineering
Software Engineering
Strategy
Systems Engineering

Author:

Alexis Black Bjorlin

VP/GM, DGX Cloud
NVIDIA

Dr. Alexis Black Bjorlin was previously VP, Infrastructure Hardware Engineering at Meta. She also serves on the board of directors at Digital Realty and Celestial AI. Prior to Meta, Dr. Bjorlin was Senior Vice President and General Manager of Broadcom’s Optical Systems Division and previously Corporate Vice President of the Data Center Group and General Manager of the Connectivity Group at Intel. Prior to Intel, she spent eight years as President of Source Photonics, where she also served on the board of directors. She earned a B.S. in Materials Science and Engineering from Massachusetts Institute of Technology and a Ph.D. in Materials Science from the University of California at Santa Barbara.

Alexis Black Bjorlin

VP/GM, DGX Cloud
NVIDIA

Dr. Alexis Black Bjorlin was previously VP, Infrastructure Hardware Engineering at Meta. She also serves on the board of directors at Digital Realty and Celestial AI. Prior to Meta, Dr. Bjorlin was Senior Vice President and General Manager of Broadcom’s Optical Systems Division and previously Corporate Vice President of the Data Center Group and General Manager of the Connectivity Group at Intel. Prior to Intel, she spent eight years as President of Source Photonics, where she also served on the board of directors. She earned a B.S. in Materials Science and Engineering from Massachusetts Institute of Technology and a Ph.D. in Materials Science from the University of California at Santa Barbara.

Author:

Marshall Choy

SVP, Product
SambaNova Systems

Marshall Choy is Senior Vice President of Product at SambaNova Systems and is responsible for product management and go-to-market operations.  Marshall has extensive experience leading global organizations to bring breakthrough products to market, establish new market presences, and grow new and existing lines of business.  Marshall was previously Vice President of Product Management at Oracle until 2018.  He was responsible for the portfolio and strategy for Oracle Systems products and solutions.  He led teams that delivered comprehensive end-to-end hardware and software solutions and product management operations.  Prior to joining Oracle in 2010 when it acquired Sun Microsystems, he served as Director of Engineered Solutions at Sun.  During his 11 years there, Marshall held various positions in development, information technology, and marketing. 

Marshall Choy

SVP, Product
SambaNova Systems

Marshall Choy is Senior Vice President of Product at SambaNova Systems and is responsible for product management and go-to-market operations.  Marshall has extensive experience leading global organizations to bring breakthrough products to market, establish new market presences, and grow new and existing lines of business.  Marshall was previously Vice President of Product Management at Oracle until 2018.  He was responsible for the portfolio and strategy for Oracle Systems products and solutions.  He led teams that delivered comprehensive end-to-end hardware and software solutions and product management operations.  Prior to joining Oracle in 2010 when it acquired Sun Microsystems, he served as Director of Engineered Solutions at Sun.  During his 11 years there, Marshall held various positions in development, information technology, and marketing. 

AI Hardware Summit attendees are invited to attend the an extended networking session where they can meet attendees from across both events. The Meet & Greet is a perfect opportunity to reconnect with peers, expand your network, and discuss the state of ML across the cloud-edge continuum!

Chip Design
Developer Efficiency
Edge AI
Enterprise AI
ML at Scale
NLP
Novel AI Hardware
Systems Design
Data Science
Hardware Engineering
Software Engineering
Strategy
Systems Engineering

Author:

Colin Murdoch

Chief Business Officer
DeepMind

Decades of international commercial experience and deep technical expertise mean Colin is uniquely placed to ensure DeepMind’s cutting-edge research benefits as many people as possible. As Chief Business Officer of DeepMind, he oversees a wide-range of teams including Applied, which applies research breakthroughs to Google products and infrastructure used by billions of people. He also helps drive the growth of DeepMind, building and leading critical functions including finance and strategy and leading external and commercial partnerships. Originally an electronics and software engineer, he has held senior positions at both start-ups and global companies such as Thomson Reuters, helping them solve their own complex, mission-critical, real-world challenges.

Colin Murdoch

Chief Business Officer
DeepMind

Decades of international commercial experience and deep technical expertise mean Colin is uniquely placed to ensure DeepMind’s cutting-edge research benefits as many people as possible. As Chief Business Officer of DeepMind, he oversees a wide-range of teams including Applied, which applies research breakthroughs to Google products and infrastructure used by billions of people. He also helps drive the growth of DeepMind, building and leading critical functions including finance and strategy and leading external and commercial partnerships. Originally an electronics and software engineer, he has held senior positions at both start-ups and global companies such as Thomson Reuters, helping them solve their own complex, mission-critical, real-world challenges.

Author:

Cade Metz

Technology Correspondent
New York Times

Cade Metz is a reporter with The New York Times, covering artificial intelligence, driverless cars, robotics, virtual reality, and other emerging areas. Genius Makers is his first book. Previously, he was a senior staff writer with Wired magazine and the U.S. editor of The Register, one of Britain’s leading science and technology news sites.

A native of North Carolina and a graduate of Duke University, Metz, 48, works in The New York Times’ San Francisco bureau and lives across the bay with his wife Taylor and two daughters.

Cade Metz

Technology Correspondent
New York Times

Cade Metz is a reporter with The New York Times, covering artificial intelligence, driverless cars, robotics, virtual reality, and other emerging areas. Genius Makers is his first book. Previously, he was a senior staff writer with Wired magazine and the U.S. editor of The Register, one of Britain’s leading science and technology news sites.

A native of North Carolina and a graduate of Duke University, Metz, 48, works in The New York Times’ San Francisco bureau and lives across the bay with his wife Taylor and two daughters.

2022 Sample Attendee List

Graphcore's Intelligence Processing Unit (IPU), built on its unique wafer-on-wafer technology architecture, enables innovators across all industries to undertake breakthrough research with the power of AI compute. To deliver what Graphcore believes will be the standard for machine intelligence compute, it follows a continuous integration (CI) and continuous delivery (CD) process to ensure incremental code changes are delivered quickly and reliably to production. In this workshop, Graphcore will share how it’s using Synopsys formal verification solutions throughout the CI/CD process to deliver bug-free silicon.  Workshop topics include:

  • An introduction to Sequential Equivalence Checking (SEQ) and Formal Testbench Analyzer (FTA) applications, part of Synopsys VC Formal
  • Graphcore’s formal verification deployment to maximize engineering productivity
  • How formal is modified for CI and CD
  • Strategies Graphcore employed to overcome reproducibility challenges at the CI stage

 

Hardware Engineer workshop are restricted to hardware engineers and architects, and software designers from companies interested in learning how to design and deploy ML onto hardware platforms.

Workshops are application only and subject to eligibility and availability. The workshops are free, and lunch, shared networking sessions, and access to the Meet and Greet function and keynote is included in the developer pass. If you're a hardware or software engineer, please apply using the form in the registration section of the website or by emailing [email protected]. There are approximately 30 spaces available.

Chip Design
Novel AI Hardware
Systems Design
Hardware Engineering
Systems Engineering

Author:

Manish Pandey

Fellow & VP, R&D
Synopsys

Manish Pandey is Vice President R&D and Fellow at Synopsys, and an Adjunct Professor at Carnegie Mellon University. He completed his PhD in Computer Science from Carnegie Mellon University and a B. Tech. in Computer Science from the Indian Institute of Technology Kharagpur. He currently leads the R&D teams for formal and static technologies, and machine learning at Synopsys. He previously led the development of several static and formal verification technologies at Verplex and Cadence which are in widespread use in the industry. Manish has been the recipient of the IEEE Transaction in CAD Outstanding Young author award and holds over two dozen patents and refereed publications.

Manish Pandey

Fellow & VP, R&D
Synopsys

Manish Pandey is Vice President R&D and Fellow at Synopsys, and an Adjunct Professor at Carnegie Mellon University. He completed his PhD in Computer Science from Carnegie Mellon University and a B. Tech. in Computer Science from the Indian Institute of Technology Kharagpur. He currently leads the R&D teams for formal and static technologies, and machine learning at Synopsys. He previously led the development of several static and formal verification technologies at Verplex and Cadence which are in widespread use in the industry. Manish has been the recipient of the IEEE Transaction in CAD Outstanding Young author award and holds over two dozen patents and refereed publications.

Author:

Anthony Wood

Formal Verification Lead
Graphcore

Anthony has held a number of a design and verification roles working on CPUs, GPUs and IPUs at Infineon, Xmos, Imagination and Graphcore.  At Imagination he was head of verification for the high-end GPU cores.  At Graphcore his responsibilities include leveraging formal verification techniques throughout the silicon team; reducing delivery timescales through Continuous Delivery; and working to ensure verification disciplines are adopted for DFT.  He strives to find ways of improving the productivity of silicon engineers and of course he agonises about potential verification holes.

Anthony Wood

Formal Verification Lead
Graphcore

Anthony has held a number of a design and verification roles working on CPUs, GPUs and IPUs at Infineon, Xmos, Imagination and Graphcore.  At Imagination he was head of verification for the high-end GPU cores.  At Graphcore his responsibilities include leveraging formal verification techniques throughout the silicon team; reducing delivery timescales through Continuous Delivery; and working to ensure verification disciplines are adopted for DFT.  He strives to find ways of improving the productivity of silicon engineers and of course he agonises about potential verification holes.

State-of-the-art large language models (LLMs) are empowering organizations to unlock the most critical insights in their unstructured data. Despite the opportunities, the cost and complexity of developing these models internally makes them impractical for most organizations to develop on their own. SambaNova overcomes these challenges with production-ready, pre-trained LLMs delivered through a full-stack solution, which can be further adapted through unlimited fine-tuning or pre-training within an organization’s own environment. In this workshop, we will showcase prototyping solutions for enterprise semantic search, legal compliance analysis, and call center service analysis, built on top of pretrained LLMs available through SambaNova Dataflow-as-a-Service. This is followed by live trials on the demo to showcase the exciting potential of large language models.

Developer workshops are restricted to machine learning practitioners from research institutions and enterprises who are interested in learning how to port code onto novel AI platforms and want to get hands-on access to hardware and SDKs. 

Workshops are application only and subject to eligibility and availability. The workshops are free, and lunch, shared networking sessions, and access to the Meet and Greet function and keynote is included in the developer pass. If you're a machine learning engineer / AI application developer, please apply using the form in the registration section of the website or by emailing [email protected]. There are approximately 30 spaces available.

Developer Efficiency
NLP
Novel AI Hardware
Data Science
Software Engineering

Author:

Jian Zhang

Director, Machine Learning
SambaNova Systems

Jian Zhang

Director, Machine Learning
SambaNova Systems

Deploying a neural network on an embedded solution requires more than compiling a trained model. Join us to discuss the IP and tooling available from Cadence that allow architects to start with a neural network model, run through quantization and partitioning mapping to a configurable embedded target, simulating the design to get performance data (both cycle and energy), and iterating through design optimizations to reach an optimal implementation. Our experts will give a technical walkthrough of the tools, features, supported frameworks, and infrastructure available to both software and silicon designers.

Hardware Engineer workshop are restricted to hardware engineers and architects, and software designers from companies interested in learning how to design and deploy ML onto hardware platforms.

Workshops are application only and subject to eligibility and availability. The workshops are free, and lunch, shared networking sessions, and access to the Meet and Greet function and keynote is included in the developer pass. If you're a hardware or software engineer, please apply using the form in the registration section of the website or by emailing [email protected]. There are approximately 30 spaces available.

 

Chip Design
Edge AI
Novel AI Hardware
Hardware Engineering

Author:

Ade Bamidele

Design Engineering Architect
Cadence Design Systems

Ade is an Architect in the Tensilica Central Applications Team. Ade focuses on the optimization and acceleration of imaging and vision algorithms on Vision and AI DSP and engines. He has over 15 years of experience in the R&D and optimization of computer vision and pattern recognition algorithms on vision and embedded devices. Ade graduated from University College London in 2006 with a Doctoral in Electronics Engineering and Thesis focusing on Computational Visual Attention.

Ade Bamidele

Design Engineering Architect
Cadence Design Systems

Ade is an Architect in the Tensilica Central Applications Team. Ade focuses on the optimization and acceleration of imaging and vision algorithms on Vision and AI DSP and engines. He has over 15 years of experience in the R&D and optimization of computer vision and pattern recognition algorithms on vision and embedded devices. Ade graduated from University College London in 2006 with a Doctoral in Electronics Engineering and Thesis focusing on Computational Visual Attention.

Author:

Michael Hubrig

Sr Design Engineering Architect
Cadence Design Systems

Michael is Sr. Architect in the Tensilica Central Applications Team. His team provides deep technical support for Vision and AI DSP and engines. Michael has 20 years of experience porting imaging and vision algorithms to DSP platforms.

Michael Hubrig

Sr Design Engineering Architect
Cadence Design Systems

Michael is Sr. Architect in the Tensilica Central Applications Team. His team provides deep technical support for Vision and AI DSP and engines. Michael has 20 years of experience porting imaging and vision algorithms to DSP platforms.

Author:

Rohan Darole

Sr Principal Design Engineer
Cadence Design Systems

Rohan Darole is a ML Product Specialist at Cadence TIP (Tensilica IP Group). He received his Master’s in Computer Science from SUNY-UB, Buffalo, NY. Rohan is leading a team of application engineers responsible for definition, realization, and customer engagements of Tensilica AI MAX Product Family. Previously he has worked on CV/ML Acceleration with Vision DSPs, Imaging (ISP) & Video Codecs SW Development.

Rohan Darole

Sr Principal Design Engineer
Cadence Design Systems

Rohan Darole is a ML Product Specialist at Cadence TIP (Tensilica IP Group). He received his Master’s in Computer Science from SUNY-UB, Buffalo, NY. Rohan is leading a team of application engineers responsible for definition, realization, and customer engagements of Tensilica AI MAX Product Family. Previously he has worked on CV/ML Acceleration with Vision DSPs, Imaging (ISP) & Video Codecs SW Development.